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The anisotropy of the magnetoviscous effect in ferrofluids subjected to weak planar Couette flow is inves-
tigated by extensive molecular simulations. The field and concentration dependence of the viscosity coeffi-
cients are found to depend on the relative orientation of the magnetic field with respect to the flow geometry.
Comparison with dynamical mean-field models shows satisfactory agreement for moderate interaction
strengths. In the semidilute regime it is found that the anisotropy contains valuable information on particle
interaction.
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I. INTRODUCTION

Magnetic fluids have attracted considerable interest since
their viscous properties can be manipulated by external mag-
netic fieldsf1,2g. Here, we study the anisotropy of the mag-
netoviscous effectsMVEd, i.e., the dependence of the viscos-
ity not only on the magnitude of the magnetic field but also
on its relative orientation to the flow geometry.

It has been known since the first experimental observation
of the magnetoviscous effect by McTaguef3g that the mag-
netoviscous effect is anisotropic, i.e., the viscosity changes in
a different way depending on the relative orientation of the
magnetic field and the velocity gradients. A pipe flow geom-
etry with the magnetic field oriented either in flow or perpen-
dicular to the flow direction was employed in the experiment
of McTague. Early theoretical explanation by Shliomisf4g of
the magnetoviscous effect successfully accounts for the dif-
ferent values of viscosity observed in these experiments. On
the other hand, the modelf4g fails to account for the aniso-
tropy of the MVE observed in a parallel plate geometryf5g.
In this experiment, three different viscosity coefficients are
measured for the magnetic field oriented in the flow, gradi-
ent, and vorticity direction, respectively. More refined theo-
retical models like the chain modelf6g or the dynamical
mean-field modelf7g are able to describe these results at
least qualitatively. Subsequent experimental investigations
have revealed other shortcomings of the modelf4g like con-
centration dependence of the viscosity, normal stress differ-
ences, and off-equilibrium magnetization in an elongational
flow ssee, e.g.f8g, Odenbach inf1g and references thereind.
Unfortunately, these studies have focused on a fixed orienta-
tion of the magnetic field and therefore cannot give direct
information on the anisotropy of the MVE.

In this paper, we present extensive molecular simulations
on the anisotropy of the MVE in weak planar Couette flow
and its dependence on the magnetic field, concentration, and
interaction strength. This paper is organized as follows. In
Sec. II the model system is presented and the relevant mac-
roscopic quantities are given. Section III reviews the simpli-

fied non-interacting modelf4g and dynamical mean-field
model f7g. Simulation results of the model system are re-
ported in Sec. IV together with a comparison to the simpli-
fied models. Finally, some conclusions are offered in Sec. V.

II. MODEL EQUATIONS

We study the same model that was already employed in
previous studiesf9,10g. In this model,N identical spherical
particles of diameters are considered. Each particle carries
an embedded magnetic point dipole of strengthm. The
position of particlej and the orientation of its magnetic mo-
ment are denoted byr j and u j, respectively. LetH denote
the uniform internal magnetic field of strengthH. The
interaction energy of particlej with the magnetic field
F j

H=FHsu jd, the interaction energy of particlesj and k due
to dipolar interactionsF jk

dd=Fddsr jk ,u j ,ukd and steric inter-
actionsF jk

s =Fssr jkd are given by

FHsud = − kBThu ·H/H, s1d

Fddsr ,u,u8d = kBTl
s3

r3 fu ·u8 − 3su · r̂ dsu8 · r̂ dg, s2d

Fssrd = H4efCsrd − Csrcutdg for r ø rcut,

0 elsewhere,
J s3d

wherer jk=r j −r k is the connector vector between particlesj
andk, r̂ jk=r jk / r jk with r jk the distance between the particles.
In Eqs.s1d ands2d, we have introduced the Langevin param-
eterh=m0mH/kBT and the dimensionless dipolar interaction
parameter

l =
m0m

2

4ps3kBT
. s4d

Boltzmann’s constant and absolute temperature are denoted
by kB and T, respectively. Followingf9,10g, we choose the
WCA potential for the steric interaction, i.e.,Csrd=ss / rd12

−ss / rd6 andrcut=21/6s, i.e., a purely repulsive potential with
smooth cutoff atr =rcut. Same as inf9,10g, we assume that
the system under study is surrounded by a uniform medium*Corresponding author. Email address: ilg@physik.tu-berlin.de
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with infinite magnetic permeability. In this case, metallic
boundary conditions apply and the internal magnetic fieldH
coincides with the applied external field.

A. Translational and orientational dynamics

If M and Q denote the mass and the moment of inertia
tensor of the ferromagnetic particles, the equations of motion
for the translational and orientational dynamics readf9–12g

Mv̇ j = o8
k=1

N

F jk − ztfv j − vsr jdg + F j
B, s5d

Q · v̇ j = mu j 3 H + o
k=1

N

8N jk
dd − zrotfv j − Vsr jdg + N j

B,

s6d

wherev j = ṙ j andv j =u j 3 u̇ j denote the translational and an-
gular velocity of particlej , respectively. The forcesF jk and
torquesN jk

dd are obtained from the interaction potential by

F jk = − ]F jk/]r jk, N jk
dd = −L jF jk s7d

sno summation conventiond, where F jk=F jk
dd+F jk

s is the
total interaction potential of particlesj and k andL j ;u j
3] /]u j is the rotational operator. The first term on the
right-hand side of Eq.s6d equals −L jF j

H, which is the
torque exerted by the magnetic field. Primes on summation
symbols imply that the termj =k should be omitted from
the sums. The effect of the solvent is modeled by
Brownian forcesF j

B and torquesN j
B with kF j

Bl=kN j
Bl=0 and

kF j
BFk

Bl=2kBTztd jk1 and kN j
BNk

Bl=2kBTzrot d jk1. The transla-
tional zt and rotationalzrot friction coefficients have been
introduced. For a sphere of diameters in a solvent with
viscosity hs, these coefficients are given byzt=3phss and
zrot=phss

3, respectively. Since hydrodynamic interactions
are not included in Eqs.s5d and s6d, we here consider the
so-called “free-draining limit.”

B. Magnetization and viscosity coefficients

Macroscopic quantities like the magnetization and viscos-
ity coefficients are obtained as ensemble averages. The mac-
roscopic magnetization is defined byM =Msatū, whereMsat
=nm is the saturation magnetization withn=N/V the number
density of magnetic particles. The average orientation of the
magnetic dipoles is calculated fromū=s1/Ndo j=1

N u j.
In order to define the viscosity coefficients, consider the

momentum balance equation of the fluid,rv̇=−= ·P+ fM,
wherefM denotes the magnetic force density. The mass den-
sity and the velocity of the fluid are denoted byr and v,
respectively. Like any second rank tensor, the viscous pres-
sure tensorP can be decomposed uniquely into its isotropic,
symmetric traceless, and antisymmetric partf13g,

s8d

s9d

with the symmetric velocity gradientD; 1
2f=v+s=vdTg. The

antisymmetric part of the viscous pressure tensor is given by

pa = M 3 H . s10d

The magnetic force densityfM can be derived from Max-
well’s magnetic pressure tensorPM by fM =−= ·PM. If a term
proportional toM2 is adsorbed in the scalar pressurep f14g,
the magnetic pressure tensor can be written asPM =−BH
+sm0H

2/2d1. The magnetic inductionB is given by B
=m0sH +M d. The total pressure tensorP+PM is symmetric
due to conservation of total angular momentum.

In a plane shear flow,v=sġy,0 ,0d, the shear viscosity is
defined byhyx=−Pyx/ ġ. Note, that no contribution of the
Maxwell pressure tensor to the shear stress arises because of
the boundary conditions for the magnetic fieldsH and B
ssee, e.g., Chap. 8.12 off2gd. Similar to the Miesowicz vis-
cosities of liquid crystalsf13,15,16g, different viscosity co-
efficientshi can be defined if the magnetic field is oriented in
flow si =1d, in gradientsi =2d, or in the vorticity direction
si =3d of the flow. In addition, a fourth viscosity coefficient is
needed to fully characterize the viscous behavior. This coef-
ficient can be chosen ash4, the viscosityhyx that is measured
if the magnetic field is oriented along the bisector of the flow
and gradient direction.

Next, we consider a simplified mean-field model that al-
lows analytical predictions of the nonequilibrium magnetiza-
tion and viscosity coefficients. These predictions will later be
compared to simulation results of the model just presented.

III. DYNAMICAL MEAN-FIELD MODEL

In Ref. f7g, a mean-field approximation to the dynamics
of the interacting many-particle system, cf. Sec. II, was pro-
posed that extends the model of noninteracting magnetic di-
polesf4g to the weakly interacting regime. The range of va-
lidity of this dynamical mean-field model was investigated in
f9g for the special case, where the magnetic field is oriented
in the gradient direction of the flow.

Here, we briefly summarize the dynamical mean-field
model introduced inf7g. On time scales that are long enough
so that the inertia termQ ·v can be neglected, the Langevin
dynamics of the orientational degrees of freedom can be ex-
pressed by the Smoluchowski equation for the orientational
distribution functionfsu ; td,
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] f

]t
= −L ·FSV −

1

zrot
LFeffD fG +

kBT

zrot
L2f . s11d

The magnetization is determined fromf by M =Msatkul,
where kulstd=ed2u ufsu ; td. In principle, the orientational
and translational degrees of freedom are coupled by the di-
polar interactions. For low concentrations and smalll, the
combined effect of a magnetic field and dipolar interactions
can be described by a local magnetic fieldhloc=h+xLkul,
with Floc=−kBTu ·hloc. In this approximation, the equilib-
rium magnetization is given byMeq=MsatL1shlocd, where
L1sxd=cothsxd−x−1 is the Langevin function. In the presence
of a flow fieldvsr d with a symmetric velocity gradientD, the
dipolar interactions are modified via the flow-induced distor-
tion of the pair correlation function. This effect was taken
into account in Ref.f7g within a Kirkwood-Smoluchowski
equation. For weak, time-independent flows, this effect can
be approximated by an additional contribution to the effec-
tive potential,

Feff

kBT
= − u ·hloc +

6

5
xLt u ·D · kul. s12d

In Eq. s12d, we have introduced the translational relaxation
time t, which enters the Kirkwood-Smoluchowski equation
as an additional parameterf7g.

Inserting the effective potential Eq.s12d into the kinetic
equation s11d defines DMF model of weakly interacting
magnetic dipoles proposed inf7g. In the limit xL →0, the
kinetic model of noninteracting magnetic dipolessNId is re-
covered as a special case.sSee Table I.d

A. Nonequilibrium magnetization in mean-field approximation

The magnetization dynamics is obtained from the Smolu-
chowski equations11d by multiplication with u and subse-
quent integration overu. Due to interactions, however, no
closed equation for the magnetization can be obtained by this
procedure. To overcome the closure problem, the so-called
effective field approximation has frequently been employed
in the literaturef4,17g. In f17g, we have shown that the ef-
fective field approximation gives very accurate predictions in
the noninteracting case for weak and moderate shear rates.

Within the effective field approximation, the nonequilib-
rium magnetization for small shear ratestrotġ!1 is found to
be given by

M

Msat
=

M eq

Msat
+ trotġ

3S1
2

hs2 + S2d1 ĥyf1 − Bs1 − 2ĥx
2dg

− ĥxf1 + Bs1 − 2ĥy
2g

2Bĥxĥyĥz

2 ,

s13d

where we have definedB=k0xLs2+S2d /3. To first order in
trotġ, the orientational order parametersSj can be replaced

by their equilibrium valuesSjshd=Ljshlocd, where L1sxd
=cothsxd−x−1 is the Langevin function introduced above and
L2sxd=1−3L1sxd /x. The ratio of relaxation timesk0

=3t / s5trotd occurs inB, wheretrot=phss
3/ s3kBTd denotes

the orientational relaxation time of a sphere with diameters
in a solvent with viscosityhs.

From Eq.s13d we observe that the flow induced nonequi-
librium magnetization is different, if the magnetic field is

oriented in the flowsi =1: ĥx=1, ĥy= ĥz=0d or in the gradient

si =2: ĥy=1, ĥx= ĥz=0d direction. In the noninteracting case,
xL →0, the absolute values of the magnetization components
become equal. Thus if we define an average nonequilibrium
magnetization by 2M'=Mysi =1d+Mxsi =2d, the DMF
model predictssid that the non-equilibrium magnetization
components are related,M'= 1

2fMxsi =4d−Meqg, where
Mxsi =4d denotes the magnetization in case the magnetic
field is oriented along the bisector of the flow and gradient
direction, andsii d that sh/S1

2dM'=const, i.e. independent of
h. The value of this constant is a direct measure for the
strength of dipolar interactions.

B. Viscosity coefficients in mean-field approximation

For spatially homogeneous systems, the symmetric con-
tribution to the viscous pressure tensorers9d can be reex-
pressed in terms of the pair correlation function. Employing
a Kirkwood-Smoluchowski equation for the pair correlation
function f7,18g, the viscous pressure tensor becomesf7g

s14d

In Eq. s14d, we have introduceda;2hsklf2, where k
=s24/7dk0. The shear viscosity of the isotropic suspension is
h0=hss1+ 5

2f+bf2d, where b; 7
6c4k and h̃0;h0− 1

3sc1

−3dakul2. The coefficientsck depend on the detailed form of
the short range interaction potential. For the WCA potential
considered in Sec. II and in the limit of small concentrations
where the pair correlation function of the reference fluid can
be approximated bygsrd<expf−bFssrdg for r .s and zero
else, these coefficients take the valuesc1<7.72 and c4
<8.36. A reduced temperature ofT* =1 has been assumed.
For potentials with softer repulsion higher values ofc1 andc4
are obtained.

The only parameter in the DMF model which is not speci-
fied so far is the translational relaxation timet entering the
dimensionless quantityk. In principle, t can be determined
from molecular simulations of structural relaxation in non-
magnetic systems. Here, we use as a rough estimate the time

TABLE I. Nomenclaturesselected quantitiesd.

l h Msat f xL zrot zt trot k0 k

m0m
2

4ps3kBT

m0mH

kBT
nm ps3n

6
8lf phss

3 3phss zrot

3kBT

3t

5trot

24
7 k0
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to travel a particle diametert<t0=sMs2/ed1/2. With this
choice no adjustable parameters are left in the DMF model.

In a steady shear flow with the linear velocity profilev
=sġy,0 ,0d, the shear viscosityhyx can be calculated from
Eq. s14d explicitly. If the magnetic field is oriented in the
flow si =1d, gradientsi =2d, vorticity si =3d direction or par-
allel to the bisector between the flow and gradient direction
si =4d, the DMF model predicts the following viscosity coef-
ficients

hi = h0 +
3

2
hsf

3S1
2

2 + S2
Fs1 − di,3d + dikxL

2 + S2

3
G , s15d

where the constantsdi are defined byd1=sc1/6+3d /6, d2

=sc1/6−4d /6, d3=s1−c1/3d /6, andd4=−d3. In the theory of
liquid crystals, the viscosity coefficientshi are known as
Miesowicz viscositiesf13,16g. Instead ofh4 the Helfrich vis-
cosity coefficient is frequently employed, which is defined as
h12=4h4−2sh1+h2d. From Eq. s15d we find h12= 1

2sc1/3
−1dhsfkxLS1

2.
From Eq. s15d we find thath1.h2. The same relation

holds for a dilute suspension of oblate ellipsoids, while the
opposite inequality applies in case of prolate ellipsoidsf16g.
In the absence of interactions,xL =0, the result of the nonin-
teracting model is recovered froms15d, h1=h2=h4, h3=h0
andh12=0. For the special case of dilute systems,c1<7.72
is obtained for the WCA potentialssee aboved. In this case,
d1<0.71,d2<−0.45,d3<−0.26 and the following inequali-
ties holdh1.h4.h2.

IV. RESULTS

A plane Couette flowv=sġy,0 ,0d with constant shear
rate ġ is considered exclusively in the sequel. The equations
of motion s5d and s6d are integrated numerically starting
from a given initial configuration with random dipole orien-
tations. An adaptive time step of orderDt / tref=0.001 has
been employed with the reference timetref=sMs2/ed1/2. The
reduced shear rateġ* = trefġ was chosen asġ* =0.1 if not
stated otherwise. We demonstrated inf9g that this value
is within the weak shear flow limit. A reduced temperature
T* =kBT/e=1.0 has been chosen in all simulations. The mag-

netic particles are treated as rigid spheres, for which the mo-
ment of inertia tensor takes the formQ=U1 with U
=Ms2/10. The translational friction coefficientzt is chosen
aszt=10 trefe /s2. In order to study bulk properties in a finite,
sheared system, Lees-Edwards periodic boundary conditions
are employedf12g. The long range dipolar interactions are
treated by the reaction field methodf12g. A cavity radius
rRF=2.5s and metallic boundary conditions have been cho-
sen. Typically, systems withN=2048 andN=10976 particles
are considered. We have demonstrated already inf9g, that
these values are sufficiently large to avoid finite size effects
on the simulation results. We also showed inf9g that the
results do not change significantly upon increasingrRF. The
integration is carried out for at least 105 time steps until a
stationary state has been reached. Magnetic and viscous
properties of the system are extracted as time averages for
another time interval of at least 53105 time steps. Error bars
are estimated from block averagesf12g.

Volume fractionsf=Nps3/6V betweenf=0.02 andf
=0.16 are considered which are typical for ferrofluidsf1g.
The dipolar interaction parameters4d is chosen in the range
0.25ølø2. The magnetic field is oriented either in flow,
gradient or in vorticity direction or parallel to the bisector of
the flow and gradient direction. The main simulation param-
eters are collected in Table II.

A. Magnetic properties

In Fig. 1, the nonequilibrium magnetizationMy/Msat is
shown as a function of the Langevin parameterh. The mag-
netic field was oriented in the flow direction. Results for
different values of the volume fractionf and dipolar inter-
action parameterl are shown. Also shown are the predic-
tions of the DMF model given by Eq.s13d. We observe from
Fig. 1, that the nonequilibrium magnetization is well de-
scribed by the dynamical mean-field theory forxL &0.4,
where xL =8lf denotes the Langevin susceptibility. For

TABLE II. Definition of reduced units and main simulation
parameters.

Parameter Reduced units

s ssoftd particle radius ;1

M particle mass ;1

e sseparationd interaction energy ;1

m0 magnetic susceptibility ;1

N number of particles 2048–10976

f volume fraction 0.02–0.16

l dipolar interaction parameter 0.25–2.0

T* temperature 1

ġ* shear rate 0.0–0.1

FIG. 1. The nonequilibrium magnetizationMy/Msat is shown as
a function of the Langevin parameterh. The magnetic field was
oriented in the flow direction. Circles and squares correspond to
volume fractions off=0.05 andf=0.1, respectively. Solid, shaded,
and open symbols correspond toxL =0.2, 0.4, and 0.8, respectively.
Also shown are the predictions of the DMF model, cf. Eq.s13d.
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xL =0.8 we observe that the absolute value ofMy is bigger
for f=0.05,l=2.0 than forf=0.1, l=1.0. Thus, we must
conclude that forxL *0.8 the DMF model is not applicable
since the nonequilibrium magnetization is no longer a func-
tion of xL only but depends onf and l separately. The
predictions of the DMF model agree well with the simulation
results for weak interactions,xL &0.4.

The case when the magnetic field is oriented in the gradi-
ent direction was already considered inf9g. A similar behav-
ior as shown in Fig. 1 has been observed for the nonequilib-
rium magnetizationMx, except thatMx is positive in this
case; see Eq.s13d.

If the magnetic field is oriented in the vorticity direction,
no flow induced magnetization component in flow or gradi-
ent direction is observed within the error bars of the simula-
tion. This observation is in agreement with the DMF model
predictions.

Figure 2 shows the nonequilibrium magnetization compo-
nentsMx/Msat andMy/Msat if the magnetic field is oriented
parallel to the bisector of the flow and gradient direction. In
this case, both magnetization components are equal in equi-
librium. In a planar shear flow, the magnetization component
in flow direction is increased, while the component in gradi-
ent direction is decreased. Also shown are the predictions of

the DMF model, Eq.s13d, for ĥx= ĥy=1/Î2, andĥz=0. We
find that the predictions of the DMF model accurately de-
scribe the simulation results even forf=0.1 andl=1.0.
Moreover, we observe that the simulation results forf=0.1,
l=1.0 agree with those forf=0.05, l=2.0 snot shownd
within the error bars. It seems therefore that in this geometry
the Langevin susceptibility is the only control parameter for
xL &0.8.

B. Viscous properties

In Fig. 3, the relative change of shear viscosityshyx

−h0d /h0 is shown as a function of the Langevin parameterh.

Note that the shear viscosity contains contributions from the
symmetric s9d and antisymmetric parts10d of the viscous
pressure tensor. The magnetic field was oriented either in the
flow, gradient, or in the vorticity direction. Also shown are
the corresponding Miesowicz viscositiesh1,h2, andh3 cal-
culated from Eq.s15d. While h1 and h2 increase with in-
creasing magnetic field strengthh,h3 is found to decrease
with increasingh, therebyh3−h0 becoming negative. While
the values ofh1 andh2 are comparable, the absolute value of
h3 is significantly smaller. These observations are in agree-
ment with the experimental results off5g. The NI model
predicts identical values forh1 andh2, shown by the dotted
line, while h3 is predicted to be independent ofh. For the
present choice of parameters, the simulation results deviate
considerably from these predictions. For a volume fraction of
f=0.1 and dipolar interaction strengthsl=0.25 and 0.5, the
simulation results are accurately described by the DMF
model ssolid and dashed lines, respectivelyd. For stronger
dipolar interactions,l*1, the simulation results start to de-
viate from the predictions of the DMF modelsdashed-dotted
linesd. A similar range of validity of the DMF model was
found for the nonequilibrium magnetization. It is interesting
to note that the deviations from the DMF model are stronger
for h2 and h3 than for h1, which is still rather accurately
described by the DMF model even forl=1.

Figure 4 shows the relative change of shear viscosity
shyx−h0d /h0 as a function of the volume fractionf. Results
for the Miesowicz viscositiesh1,h2, andh3 corresponding to
different orientations of the magnetic field with respect to the
flow geometry are shown. Results for dipolar interaction
strengths ofl=0.5 and 1.0 are shown. A strong magnetic
field h=20.0 was employed in the simulation. Comparison to
the prediction of the DMF modelsdashed lined, cf. Eq. s15d,
shows very good agreement for volume fractionf&0.1.
Similar to the above findings, the simulation results forh1
and h3 are well described up tof<0.15, while stronger
deviations from the DMF model are observed forh2. It is

FIG. 2. The nonequilibrium magnetization componentsMx/Msat

scirclesd and My/Msat ssquaresd are shown as a function of the
Langevin parameterh. The magnetic field was oriented parallel to
the bisector between the flow and the gradient direction. Again,
solid, shaded, and open symbols correspond toxL =0.2, 0.4, and
0.8, respectively. Also shown are the predictions of the DMF
model; cf. Eq.s13d.

FIG. 3. The relative change of shear viscosityDhyx/h0 is shown
as a function of the Langevin parameterh. Circles, squares, and
diamonds correspond to orientations of the magnetic field in the
flow, gradient, and vorticity direction of the flow, respectively. The
volume fraction was chosen asf=0.1. Solid, shaded, and open
symbols correspond tol=0.25, 0.5, and 1.0, respectively. Also
shown are the predictions of the DMF model; cf. Eq.s15d.
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interesting to note that the comparison between the DMF
model and the simulation results can be improved if the
structural relaxation time is assumed to bet<t0/2 instead
of t<t0 ssolid lines in Fig. 4d, i.e., the time to travel the
particle radius rather than the particle diameter. Therefore,
both estimates oft seem to be acceptable.

V. CONCLUSIONS

Extensive molecular simulations have been performed in
order to investigate the anisotropy of the magnetoviscous
effect. A planar, steady shear flow with the magnetic field
oriented in the flow, gradient, or vorticity direction or paral-
lel to the bisector of the flow and gradient direction has been
considered. We observe that dipolar interactions lead to

different viscosity coefficients depending on the orientation
of the magnetic field. The difference in the viscosity coeffi-
cientsh1 andh2 if the magnetic field is oriented in the flow
and in the gradient direction cannot be explained within the
noninteracting model. In both cases, the magnetic field is
perpendicular to the vorticity direction. Therefore, the differ-
ence betweenh1 andh2 gives information on the strength of
particle interactions. Similarly, the viscosity coefficienth3
that is measured if the magnetic field is oriented in the vor-
ticity direction is identical to the zero-field viscosity in the
noninteracting model. Therefore, deviations ofh3 from the
zero-field viscosity also give information on particle interac-
tions. For moderate interaction strengths,xL &0.4 the viscos-
ity coefficients are well described by the dynamical mean-
field model. For stronger interactions, the model has to be
extended by including higher order terms in the dipolar in-
teraction strength. Some steps in this direction have been
proposed inf7g but the consequences for the magnetoviscous
effect have not been worked out so far. For very strong di-
polar interactions where permanent, chainlike aggregates are
assumed, the chain modelf6g has been employed in order to
investigate magnetoviscous propertiesf16g. We hope that
further experimental studies on well-characterized ferrofluids
will be performed in order to further investigate the aniso-
tropy of the magnetoviscous effect. It should be noted, how-
ever, that in experiments the external fieldH0 is controlled,
while the present study assumes a given internal fieldH.
Both fields are related via the demagnetization coefficient
and the magnetization. Thus using the results for the magne-
tization presented in the present study and the demagnetiza-
tion coefficient appropriate for the experimental condition
allows us to recalculate the external field corresponding to
the internal field considered here.
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FIG. 4. The relative change of shear viscosity as a function of
the volume fractionf for dipolar interaction strengthsl=0.5 sfull
symbolsd and 1.0sopen symbolsd. The value of the Langevin pa-
rameter was chosen ash=20.0. Circles, squares, and diamonds
show the simulation results for magnetic fields oriented in the flow,
gradient, and vorticity direction, respectively. Solid and dashed
lines are the result of the DMF model forl=0.5; dotted line the NI
model.
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